Serveur d'exploration sur le saule

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

[Transcriptome analysis of Salix matsudana under cadmium stress].

Identifieur interne : 000009 ( Main/Exploration ); précédent : 000008; suivant : 000010

[Transcriptome analysis of Salix matsudana under cadmium stress].

Auteurs : Jimin Cao [République populaire de Chine] ; Shuangcai Li [République populaire de Chine] ; De He [République populaire de Chine]

Source :

RBID : pubmed:32748594

Descripteurs français

English descriptors

Abstract

With the expanded application of heavy metal cadmium, soil cadmium pollution is more and more serious. In this study, using Salix matsudana as a phytoremediation candidate, we observed changes of gene expression and metabolic pathway after 1, 7 and 30 days under 2.5 mg/L and 50 mg/L cadmium stress. The result of transcriptome sequencing showed that we obtained 102 595 Unigenes; 26 623 and 32 154 differentially expressed genes (DEG) in the same concentration and different stress time; 8 550, 3 444 and 11 428 DEG with different concentrations at the same time; 25 genes closely related to cadmium stress response were screened. The changes of genes expression (such as metallothionein, ABC transporter, zinc and manganese transporter) depended on both concentration of cadmium and exposure time. The expression of several genes was obviously up-regulated after cadmium stress, for example 3,6-deoxyinosinone ketolase (ROT3) in brassinolide synthesis pathway and flavonoid synthase (FLS), flavanone-3-hydroxylase (F3H) in the synthesis pathway of brassinolide. In addition, GO analysis shows that GO entries were mainly enriched in metabolic processes including cellular processes, membranes, membrane fractions, cells, cellular fractions, catalytic activation and binding proteins in response to cadmium stress, whose number would increase along with cadmium concentration and exposure time. The reliability of transcriptome information was verified by qPCR and physiological experimental data. Response mechanisms of S. matsudana after cadmium stress were analyzed by transcriptome sequencing, which provided theoretical guidance for remediation of cadmium pollution in soil by S. matsudana.

DOI: 10.13345/j.cjb.190486
PubMed: 32748594


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">[Transcriptome analysis of Salix matsudana under cadmium stress].</title>
<author>
<name sortKey="Cao, Jimin" sort="Cao, Jimin" uniqKey="Cao J" first="Jimin" last="Cao">Jimin Cao</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Life Sciences, Southwest Forestry University, Kunming 650224, Yunnan, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Life Sciences, Southwest Forestry University, Kunming 650224, Yunnan</wicri:regionArea>
<wicri:noRegion>Yunnan</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, Shuangcai" sort="Li, Shuangcai" uniqKey="Li S" first="Shuangcai" last="Li">Shuangcai Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Life Sciences, Southwest Forestry University, Kunming 650224, Yunnan, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Life Sciences, Southwest Forestry University, Kunming 650224, Yunnan</wicri:regionArea>
<wicri:noRegion>Yunnan</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="He, De" sort="He, De" uniqKey="He D" first="De" last="He">De He</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Life Sciences, Southwest Forestry University, Kunming 650224, Yunnan, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Life Sciences, Southwest Forestry University, Kunming 650224, Yunnan</wicri:regionArea>
<wicri:noRegion>Yunnan</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32748594</idno>
<idno type="pmid">32748594</idno>
<idno type="doi">10.13345/j.cjb.190486</idno>
<idno type="wicri:Area/Main/Corpus">000082</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000082</idno>
<idno type="wicri:Area/Main/Curation">000082</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000082</idno>
<idno type="wicri:Area/Main/Exploration">000082</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">[Transcriptome analysis of Salix matsudana under cadmium stress].</title>
<author>
<name sortKey="Cao, Jimin" sort="Cao, Jimin" uniqKey="Cao J" first="Jimin" last="Cao">Jimin Cao</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Life Sciences, Southwest Forestry University, Kunming 650224, Yunnan, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Life Sciences, Southwest Forestry University, Kunming 650224, Yunnan</wicri:regionArea>
<wicri:noRegion>Yunnan</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, Shuangcai" sort="Li, Shuangcai" uniqKey="Li S" first="Shuangcai" last="Li">Shuangcai Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Life Sciences, Southwest Forestry University, Kunming 650224, Yunnan, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Life Sciences, Southwest Forestry University, Kunming 650224, Yunnan</wicri:regionArea>
<wicri:noRegion>Yunnan</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="He, De" sort="He, De" uniqKey="He D" first="De" last="He">De He</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Life Sciences, Southwest Forestry University, Kunming 650224, Yunnan, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Life Sciences, Southwest Forestry University, Kunming 650224, Yunnan</wicri:regionArea>
<wicri:noRegion>Yunnan</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Sheng wu gong cheng xue bao = Chinese journal of biotechnology</title>
<idno type="eISSN">1872-2075</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biodegradation, Environmental (MeSH)</term>
<term>Cadmium (toxicity)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Gene Expression Regulation, Plant (drug effects)</term>
<term>Plant Proteins (genetics)</term>
<term>Reproducibility of Results (MeSH)</term>
<term>Salix (drug effects)</term>
<term>Salix (genetics)</term>
<term>Stress, Physiological (genetics)</term>
<term>Transcriptome (drug effects)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Cadmium (toxicité)</term>
<term>Dépollution biologique de l'environnement (MeSH)</term>
<term>Protéines végétales (génétique)</term>
<term>Reproductibilité des résultats (MeSH)</term>
<term>Régulation de l'expression des gènes végétaux (effets des médicaments et des substances chimiques)</term>
<term>Salix (effets des médicaments et des substances chimiques)</term>
<term>Salix (génétique)</term>
<term>Stress physiologique (génétique)</term>
<term>Transcriptome (effets des médicaments et des substances chimiques)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="toxicity" xml:lang="en">
<term>Cadmium</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Gene Expression Regulation, Plant</term>
<term>Salix</term>
<term>Transcriptome</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Régulation de l'expression des gènes végétaux</term>
<term>Salix</term>
<term>Transcriptome</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Salix</term>
<term>Stress, Physiological</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Protéines végétales</term>
<term>Salix</term>
<term>Stress physiologique</term>
</keywords>
<keywords scheme="MESH" qualifier="toxicité" xml:lang="fr">
<term>Cadmium</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biodegradation, Environmental</term>
<term>Gene Expression Profiling</term>
<term>Reproducibility of Results</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de profil d'expression de gènes</term>
<term>Dépollution biologique de l'environnement</term>
<term>Reproductibilité des résultats</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">With the expanded application of heavy metal cadmium, soil cadmium pollution is more and more serious. In this study, using Salix matsudana as a phytoremediation candidate, we observed changes of gene expression and metabolic pathway after 1, 7 and 30 days under 2.5 mg/L and 50 mg/L cadmium stress. The result of transcriptome sequencing showed that we obtained 102 595 Unigenes; 26 623 and 32 154 differentially expressed genes (DEG) in the same concentration and different stress time; 8 550, 3 444 and 11 428 DEG with different concentrations at the same time; 25 genes closely related to cadmium stress response were screened. The changes of genes expression (such as metallothionein, ABC transporter, zinc and manganese transporter) depended on both concentration of cadmium and exposure time. The expression of several genes was obviously up-regulated after cadmium stress, for example 3,6-deoxyinosinone ketolase (ROT3) in brassinolide synthesis pathway and flavonoid synthase (FLS), flavanone-3-hydroxylase (F3H) in the synthesis pathway of brassinolide. In addition, GO analysis shows that GO entries were mainly enriched in metabolic processes including cellular processes, membranes, membrane fractions, cells, cellular fractions, catalytic activation and binding proteins in response to cadmium stress, whose number would increase along with cadmium concentration and exposure time. The reliability of transcriptome information was verified by qPCR and physiological experimental data. Response mechanisms of S. matsudana after cadmium stress were analyzed by transcriptome sequencing, which provided theoretical guidance for remediation of cadmium pollution in soil by S. matsudana.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">32748594</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>08</Month>
<Day>10</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>08</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1872-2075</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>36</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2020</Year>
<Month>Jul</Month>
<Day>25</Day>
</PubDate>
</JournalIssue>
<Title>Sheng wu gong cheng xue bao = Chinese journal of biotechnology</Title>
<ISOAbbreviation>Sheng Wu Gong Cheng Xue Bao</ISOAbbreviation>
</Journal>
<ArticleTitle>[Transcriptome analysis of Salix matsudana under cadmium stress].</ArticleTitle>
<Pagination>
<MedlinePgn>1365-1377</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.13345/j.cjb.190486</ELocationID>
<Abstract>
<AbstractText>With the expanded application of heavy metal cadmium, soil cadmium pollution is more and more serious. In this study, using Salix matsudana as a phytoremediation candidate, we observed changes of gene expression and metabolic pathway after 1, 7 and 30 days under 2.5 mg/L and 50 mg/L cadmium stress. The result of transcriptome sequencing showed that we obtained 102 595 Unigenes; 26 623 and 32 154 differentially expressed genes (DEG) in the same concentration and different stress time; 8 550, 3 444 and 11 428 DEG with different concentrations at the same time; 25 genes closely related to cadmium stress response were screened. The changes of genes expression (such as metallothionein, ABC transporter, zinc and manganese transporter) depended on both concentration of cadmium and exposure time. The expression of several genes was obviously up-regulated after cadmium stress, for example 3,6-deoxyinosinone ketolase (ROT3) in brassinolide synthesis pathway and flavonoid synthase (FLS), flavanone-3-hydroxylase (F3H) in the synthesis pathway of brassinolide. In addition, GO analysis shows that GO entries were mainly enriched in metabolic processes including cellular processes, membranes, membrane fractions, cells, cellular fractions, catalytic activation and binding proteins in response to cadmium stress, whose number would increase along with cadmium concentration and exposure time. The reliability of transcriptome information was verified by qPCR and physiological experimental data. Response mechanisms of S. matsudana after cadmium stress were analyzed by transcriptome sequencing, which provided theoretical guidance for remediation of cadmium pollution in soil by S. matsudana.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Cao</LastName>
<ForeName>Jimin</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>College of Life Sciences, Southwest Forestry University, Kunming 650224, Yunnan, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Shuangcai</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>College of Life Sciences, Southwest Forestry University, Kunming 650224, Yunnan, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>He</LastName>
<ForeName>De</ForeName>
<AffiliationInfo>
<Affiliation>College of Life Sciences, Southwest Forestry University, Kunming 650224, Yunnan, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>chi</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>China</Country>
<MedlineTA>Sheng Wu Gong Cheng Xue Bao</MedlineTA>
<NlmUniqueID>9426463</NlmUniqueID>
<ISSNLinking>1000-3061</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>00BH33GNGH</RegistryNumber>
<NameOfSubstance UI="D002104">Cadmium</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001673" MajorTopicYN="N">Biodegradation, Environmental</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002104" MajorTopicYN="Y">Cadmium</DescriptorName>
<QualifierName UI="Q000633" MajorTopicYN="N">toxicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015203" MajorTopicYN="N">Reproducibility of Results</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032108" MajorTopicYN="Y">Salix</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="Y">Stress, Physiological</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059467" MajorTopicYN="Y">Transcriptome</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
</MeshHeadingList>
<OtherAbstract Type="Publisher" Language="chi">
<AbstractText>随着重金属镉 (Cd) 应用范围的扩大,由此引发的土壤镉污染问题日益严重。以具有植物恢复潜力的旱柳Salix matsudana 作为研究对象,探究不同浓度的Cd (2.5 mg/L, 50 mg/L) 胁迫后旱柳无性系1 d、7 d 和30 d 后基因表达与代谢通路的变化。转录组测序结果表明:共获得102 595 个非冗余基因 (Unigenes),相同浓度不同时间的差异基因总数为26 623 个和32 154 个;相同时间不同浓度的差异基因总数为8 550 个、3 444 个和11 428 个。从中筛选得到与Cd 胁迫响应密切相关的基因25 个,其中金属硫蛋白、ABC 转运蛋白、锌和锰转运蛋白等基因的表达不仅会随着Cd 胁迫浓度变化而且同时受到胁迫时间的改变而发生改变;油菜素内酯合成通路的ROT3 和黄酮类化合物合成通路的FLS、F3H 均明显上调。此外Cd 胁迫引起旱柳在代谢过程、细胞过程、膜、细胞器、细胞、细胞部分、催化活化和结合蛋白这8 个方面发生改变,参与这些GO 条目的差异表达基因数随着Cd 浓度和胁迫时间的增加而增加。并对转录组信息的可靠性用RT-PCR 和酶活性生理实验数据进行了验证。文中通过转录组测序分析旱柳Cd 胁迫后的响应机制,从而为旱柳修复土壤Cd 污染提供理论指导。.</AbstractText>
</OtherAbstract>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Salix matsudana</Keyword>
<Keyword MajorTopicYN="N">cadmium</Keyword>
<Keyword MajorTopicYN="N">differentially expressed genes</Keyword>
<Keyword MajorTopicYN="N">transcriptome</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>8</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>8</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>8</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32748594</ArticleId>
<ArticleId IdType="doi">10.13345/j.cjb.190486</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Cao, Jimin" sort="Cao, Jimin" uniqKey="Cao J" first="Jimin" last="Cao">Jimin Cao</name>
</noRegion>
<name sortKey="He, De" sort="He, De" uniqKey="He D" first="De" last="He">De He</name>
<name sortKey="Li, Shuangcai" sort="Li, Shuangcai" uniqKey="Li S" first="Shuangcai" last="Li">Shuangcai Li</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/WillowV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000009 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000009 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    WillowV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32748594
   |texte=   [Transcriptome analysis of Salix matsudana under cadmium stress].
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32748594" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a WillowV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Nov 17 16:35:40 2020. Site generation: Tue Nov 17 16:39:32 2020